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2.1 Conditional probability

2.1.1 Introduction

As always we consider a probability space (Ω,F ,P), which we think of as a mathematical model
for some physical experiment.
Recall that for any event F , say, the probability P(F ) measures our state of knowledge about the
likelihood of the event F , and that this will change as our general state of knowledge changes.
Now let E be any event such that P(E) > 0. Suppose we learn that the event E has in fact
occurred (but know nothing else about the outcome of the experiment). Given this information,
we can calculate a revised probability for every event F in the sample space Ω.

Definition 2.1. The conditional probability P(F |E) of the event F , given that the event E
has occurred is

P(F |E) =
P(E ∩ F )

P(E)
. (2.1)

as.zachary@hw.ac.uk
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The probability measure PE , defined by PE(F ) = P(F |E) for all F ∈ F (we could just say the
probability measure P(· |E)), represents our complete revision of all probabilities once we know
the event E to have occurred. Note that it is easy to check that PE is a probability measure,
i.e. that the axiomatic properties P1–P3 of Lecture 1 are satisfied whenever P is replaced by
PE .

Example 2.1. A fair coin is tossed three times. Suppose we learn that the event A that the
third toss is a head has in fact occurred (and we know nothing else). What is the revised
probability of the event B that exactly two heads are obtained. We require

P(B |A) =
P(A ∩B)

P(A)
=

1/4
1/2

=
1
2
.

This is greater than the unconditional probability of the same event, which is 3/8.

Example 2.2. A couple decide to have 2 children. Each is equally likely to be a boy or a girl,
independently of the other, so that a suitable probability model is given by

outcome : bb bg gb gg
probability : 1

4
1
4

1
4

1
4

Let A be the event that the first child is a girl, B be the event that at least one child is a girl,
and C be the event that both children are girls. Find:

• the (conditional) probability that both children are girls, given that the first child is a girl;
this is

P(C |A) =
P(A ∩ C)

P(A)
=

P(C)
P(A)

=
1
2

;

• the (conditional) probability that both children are girls, given that at least one child is a
girl; this is

P(C |B) =
P(B ∩ C)

P(B)
=

P(C)
P(B)

=
1
3
.

Does this last answer seem surprising?

2.1.2 The chain rule.

The chain rule (also called the multiplication rule) states that, for any sequence of n events
E1, E2, . . . , En,

P(E1 ∩ E2 ∩ · · · ∩ En) = P(E1)P(E2 |E1) . . .P(En |E1 ∩ E2 ∩ · · · ∩ En−1) (2.2)

In the case n = 2, the expression (2.2) reduces to

P(E1 ∩ E2) = P(E1)P(E2 |E1).

which, for P(E1) > 0, is immediate from the definition (2.1) of conditional probability, and, for
P(E1) = 0, is trivial (since then P(E1 ∩ E2) = 0 also).
The use of the chain rule is that conditional probabilities are often more easily obtained than
unconditional probabilities. Indeed probability models are often most naturally specified via
sequences of initially unconditional, and then conditional, probabilities.

Example 2.3. An urn contains 6 numbered balls. Two balls are chosen at random, in succession,
and without replacement. What is the probability of the event that both balls chosen have an
even number?
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Let A be the event that the first ball chosen has an even number and let B be the event that the
second ball chosen has an even number. Then, in a reasonable probability model, P(A) = 1/2
and P(B |A) = 2/5 (since, if the first ball chosen has an even number, then of the 5 remaining
balls only 2 now have an even number). The required probability is now

P(A ∩B) = P(A)P(B |A) =
1
2
× 2

5
=

1
5
.

This result may also be obtained by noting that, again in any reasonable probability model,
each of the 6 = 30 possible ordered sequences (n1, n2) of two numbered balls is equally likely
to be obtained, and for 3× 2 = 6 of these sequences both numbers will be even. Therefore the
probability of the event that both balls chosen have an even number should again be 6/30 = 1/5.

2.1.3 The partition rule.

Let E1, . . . , En be a partition of the sample space Ω, i.e. a collection of disjoint events whose
union is all of Ω. Thus exactly one of the events E1, E2, . . . , En always occurs.
Then, for any event F ,

P(F ) =
n∑

1=1

P(Ei ∩ F ) (by the addition rule)

=
n∑
i=1

P(Ei)P(F |Ei) (by the chain rule). (2.3)

The result (2.3) is known as the partition rule or, more obscurely, the law of total probability.
The result is illustrated in the Venn diagram of Figure 2.1.

E2

En ∩ FE2 ∩ FE1 ∩ F

Ω

EnE1

Figure 2.1: Partition rule: the rectangles correspond to the partition E1, . . . , En while the ellipse
corresponds to the event F

Example 2.4. The probability that a randomly chosen individual will develop a particular
disease is 10−4. There is a test for the disease which is not entirely reliable. An individual who
has the disease will test positive with probability 0.95 (and negative with probability 0.05.) An
individual who does not have the disease will test positive with probability 0.1 (and negative
with probability 0.9.) What is the probability that a randomly chosen individual tests positive.
Let A1 be the event that the individual has the disease, and let A2 be the event that (s)he does
not. Note that A1 and A2 form a partition of Ω, and that P(A1) = 0.0001, P(A2) = 0.9999.
Let B be the event that the individual tests positive. Then we require

P(B) = P(A1)P(B |A1) + P(A2)P(B |A2)
= 0.0001× 0.95 + 0.9999× 0.10
= 0.000095 + 0.099990
= 0.100085.

Note that nearly all the positive results come from those who do not have the disease.
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2.1.4 Bayes’ Theorem

Again let E1, . . . , En be a partition of the sample space Ω. Suppose that the probabilities of
E1, . . . , En are known (and sum to 1). Suppose also that some event F is observed to have
occurred. Given this event, what are the conditional revised probabilities of E1, . . . , En?
Bayes’ Theorem states that, for each i,

P(Ei |F ) =
P(Ei)P(F |Ei)∑n
j=1 P(Ej)P(F |Ej) .

Note that these revised probabilities P(Ei |F ) also sum to 1.
The proof is almost immediate from the chain rule and partition rule, and is left as an exercise.
Example 2.4 (again). Suppose that, in the earlier example, the test gives a positive result. What
is the probability that the individual has the disease. By Bayes’ Theorem, this is

P(A1 |B) =
P(A1)P(B |A1)

P(A1)P(B |A1) + P(A2)P(B |A2)

=
0.0001× 0.95

0.0001× 0.95 + 0.9999× 0.10
= 0.00095.

Thus, given a positive result, it is about 10 times as likely as before that the individual has the
disease. However, the probability is still very small.

2.2 Independence

In this section we discuss the concept of probabilistic independence—of events, random variables,
etc. However, it turns out that an understanding of independence is most naturally expressed
in terms of σ-algebras, and we shall try to make this clear. We start with the usual (simple)
concept of independence of events.
We continue to consider a probability space (Ω,F ,P)

2.2.1 Independence of events

Typically events are independent if they depend on physically independent experiments or situ-
ations.

Definition 2.2. Two events E and F are independent if and only if

P(E ∩ F ) = P(E)P(F ).

If we compare this with the earlier chain rule of Section 2.1 (valid for any two events E and F ) we
see that, provided P(E) > 0, the events E and F are independent if and only if P(F |E) = P(F ).
This is in agreement with our intuitive understanding of independence, which is that information
about whether or not E has occurred conveys no information about whether or not F has
occurred (and conversely).
It is important to note that that if E and F are independent, then so also are E and F c, and
also Ec and F , and also Ec and F c: for example, we have

P(E ∩ F c)P(E)−P(E ∩ F )
= P(E)−P(E)P(F ) (independence of E and F )
= P(E)(1−P(F ))
= P(E)P(F c).
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Example 2.5. A fair die is rolled twice, in such a way that all 36 paired outcomes are equally
likely. For k = 2, . . . , 12, let Ak be the event that the total shown on the two rolls is k. Let B
be the event that the first roll shows 6. Show that the events Ak and B are independent only
for k = 7, and give the intuitive understanding of this result.

We now extend the definition of independence to any countable number of events.

Definition 2.3. The events E1, E2, E3, . . . are independent if and only if, for every finite subset
Ei1 , . . . , Eik , we have

P(Ei1 ∩ · · · ∩ Eik) = P(Ei1) . . .P(Eik). (2.4)

Again this is in agreement with our intuitive understanding of independence of events, which is
that information about whether or not each of any given number of these has occurred conveys
no information about whether or not any of the remainder have occurred.
Note that it is easy to construct examples in which (2.4) holds for every pair of the given events,
but does not hold for larger collections, i.e. pairwise independence does not imply independence.
Again independence of events implies independence of their complements.

2.2.2 Independence of σ-algebras

Recall that a sub σ-algebra of F is a collection of events within F which is itself a σ-algebra
(i.e. is closed under the taking of complements and of countable unions of events). The simplest
example is the σ-algebra generated by a single event E, which is G(E) = {E,Ec,Ω, ∅}. In general
we can associate a σ-algebra with some precise state of information about the sample space Ω.
For example, if, for a given collection of events E1, E2, . . . , we know whether or not each of them
has occurred, then we also know this for every event in the σ-algebra G(E1, E2, . . . ) generated
by these events (the smallest σ-algebra which contains all of them). (This follows since it is
easy to see that the entire collection of events in F about which we can say whether or not
each of them has occurred is a σ-algebra—check it has the right closure properties; hence if this
collection contains E1, E2, . . . , it necessarily contains G(E1, E2, . . . ).)
The following definition is now natural.

Definition 2.4. The σ-algebras F1,F2,F3, . . . are independent if and only if, for all Ei ∈ Fi,
i ≥ 1,

P
(⋂
i≥1

Ei

)
=
∏
i≥1

P(Ei). (2.5)

By recalling that any of the events Ei in the above definition may be taken to be Ω (so that we
do not formally need to consider finite sub-collections in (2.5) (in contrast to (2.4)), we see that
we may equivalently say that the σ-algebras F1,F2,F3, . . . are independent if and only if, for
all Ei ∈ Fi, i ≥ 1, the events E1, E2, E3, . . . are independent.
By recalling also the earlier result that independence of events implies independence of their
complements, we conversely have that events E1, E2, E3, . . . are independent if and only if the
σ-algebras G(E1),G(E2),G(E3), . . . which they generate are independent.

2.2.3 Independence of random variables

For any random variable X we may similarly define the σ-algebra G(X) generated by X as

G(X) = {X−1(B), B ∈ B}, (2.6)

where as usual B is the Borel σ-algebra on R. (Recall from Lecture 1 that G(X) thus defined is
a σ-algebra.) This is the collection of events X−1(B) = {ω : X(ω) ∈ B} which may be defined



SMST C: Probability 2–6

in terms of the random variable X, e.g. the events X ≤ x or a ≤ X ≤ b for any x, a, b. It may
again be thought of as corresponding to the information about the sample space Ω given by
knowledge of the value of the random variable X, i.e. G(X) is the set of events whose occurrence
or otherwise is determined by the value of X.
Similarly, the σ-algebra generated by any collection of random variables is the smallest which
contains the σ-algebras they individually generate, and has a similar interpretation.
We can now make the following definition of independence of random variables.

Definition 2.5. The (finite or countably infinite collection of) random variables X1, X2, . . . are
independent if and only if the corresponding σ-algebras G(X1),G(X2), . . . are independent.

In view of the definition of independence of σ-algebras, this is equivalent to the requirement
that, for all Borel sets B1, B2, · · · ∈ B,

P
(⋂
i≥1

{Xi ∈ Bi}
)

=
∏
i≥1

P(Xi ∈ Bi). (2.7)

Thus, informally, random variables are independent if and only if they define independent events.

Example 2.6. Consider again the fair die which is rolled twice. The more natural way to model
this is to think of it as a sequence of two independent experiments, in each of which each of the
6 outcomes is equally likely. Let the random variables N1 and N2 be the numbers obtained on
the two successive rolls. Then N1 and N2 are independent random variables. Define also the
total N = N1 +N2. Then, for example,

P(N = 7) =
6∑
i=1

P(N1 = i, N2 = 7− i)

=
6∑
i=1

P(N1 = i)P(N2 = 7− i) (independence of N1, N2)

=
6∑
i=1

1
6
× 1

6
=

1
6
.

Of course in this case, since the die is fair, all outcomes of the whole experiment, i.e. all ordered
pairs of numbers which may be obtained, are equally likely, and so the above probability, and
indeed the entire distribution of the random variable N , may be determined simply by counting.

2.2.4 Use of independence to construct probability models

The real value of independence is in the construction of probability models for complex experi-
ments.
Suppose that we wish to construct a probability model for the joint outcome of a sequence of
experiments which are physically independent in the sense that the outcomes of any of them do
not affect the outcomes of any of the others. An example is a sequence of independent trials
(identical experiments, such as coin tosses or repeated measurements of a physical quantity). It
is natural to do this by

• specifying the probabilities associated with each individual experiment,
• requiring that events which depend on separate experiments are (probabilistically) inde-

pendent of each other.
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Example 2.7. A coin is given repeated independent tosses, on each of which it lands heads with
probability p ∈ (0, 1). Then, in the first n tosses, the probability of obtaining a given sequence
of heads and tails, in which the total number of heads is k, is pk(1 − p)n−k. Thus, also, the
probability that, in the first n tosses, exactly k heads are obtained is

(
n
k

)
pk(1− p)n−k.

We need to be sure that the above procedure leads to a valid probability model for the entire
sequence of experiments. We assume the existence of a probability model (Ωi,Fi,Pi) for each
individual experiment i. Then the probability model (Ω,F ,P) for the entire sequence is given
by the following product construction:

• The sample space Ω is the product of the individual sample spaces Ωi, i.e. the set of ω of
the form ω = (ω1, ω2, . . . ) where each ωi ∈ Ωi. The sample points ω ∈ Ω represent the
possible outcomes of the entire sequence of experiments;
• We regard each Fi as a σ-algebra on Ω consisting of those events determined by the ith

experiment. The σ-algebra F on Ω is then the smallest σ-algebra necessary to contain all
the σ-algebras Fi. The closure properties of the σ-algebra F then ensure that it contains all
events which may reasonably be described in terms of the entire sequence of experiments.
• The probability measure P is defined by the following two requirements:

– for each i, the probability measure P should assign the same probabilities as Pi to
events in the σ-algebra Fi, i.e. to events which depend only on the ith experiment;

– the σ-algebras Fi, i ≥ 1, should be independent with respect to P; this means that
events, and similarly random variables, determined by different individual experi-
ments will be independent.

Standard (if somewhat tedious) arguments in measure theory show that the above two
requirements define a unique probability measure P (satisfying the axioms P1–P3 of Lec-
ture 1) on the σ-algebra F for the entire sequence of experiments.

Finally, it is usual to complete, if necessary, the model by requiring that F be extended to the
minimum σ-algebra which also includes all subsets of sets of probability measure 0.

2.3 Sequences of Bernoulli trials

2.3.1 Definition

As an illustration of some of the ideas of this lecture we study sequences of Bernoulli trials,
i.e. sequences of independent identical trials, each of which is a success with probability p, for
some fixed p ∈ (0, 1), and a failure with probability 1 − p. Such sequences of trials form one
of the fundamental models of probability theory, with many applications. We may conveniently
speak of successes and failures no matter what is being modelled: thus, in the case of repeatedly
tossing a coin which lands heads with probability p we may regard a head as a success and a
tail as a failure.
The probability space (Ω,F ,P) is defined as in Section 2.2.4. We define a sequence of inde-
pendent identically distributed random variables ξ1, ξ2, . . . by setting ξi = 1 if the ith trial is a
success, and ξi = 0 if it is a failure. Thus

P(ξ = 0) = 1− p, P(ξ = 1) = p.

Define also S0 = 0, Sn =
∑n

i=1 ξi for n ≥ 1.
(A common alternative is to write ξ′i = 1 or ξ′i = −1 in the event of the ith trial being respectively
a success or a failure. We similarly set S′0 = 0, S′n =

∑n
i=1 ξ

′
i for n ≥ 1. Since, for the same

sequence of trials, we have ξ′i = 2ξi − 1 for all i, and thus S′n = 2Sn − n for all n, it follows
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that the two probability models are equivalent. The sequence of random variables (S′n, n ≥ 0)
is usually referred to as a simple random walk. In the case p = 1/2—so that, for each i, ξ′i = 1
and ξ′i = −1 are equally likely—the random walk is further said to be symmetric.)
The probability model defined by the sequence (ξi, i ≥ 1) is deceptively simple; the behaviour
of the model, in particular of the sequence (Sn, n ≥ 0) of partial sums, is extremely subtle and
frequently counter-intuitive, and it is possible to pose questions of almost arbitrary depth and
difficulty about it. We shall only look at a few simple questions.

2.3.2 Behaviour of Sn

We consider first the distribution, for fixed n, of the random variable Sn. Since this is the total
number of successes in a sequence of n independent identically distributed trials, we already
know that Sn has a binomial distribution with parameters n and p, i.e. that

P(Sn = k) =
(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n, (2.8)

and we write Sn ∼ Bin(n, k).

Weak law of large numbers. Given any ε > 0,

P
(Snn − p

 ≤ ε)→ 1 as n→∞. (2.9)

This result implies that, for large n, the proportion of successes Sn/n thus far obtained is likely
to be very close to the probability p of a single success. The result may of course be obtained by
careful manipulation of (2.8), but there is a simple direct proof for more general sequences of
independent identically distributed random variables, the pleasure of which will be postponed
to later.

Central limit theorem. A further question of interest is whether and how the distribution of
Sn/n−p, or equivalently of Sn−np, may be normalised so as to converge to a non-degenerate limit
(in some appropriate sense). For given p, once n is sufficiently large the binomial distribution
Bin(n, k) is well approximated by the normal distribution with the same mean and standard
deviation. More precisely we have the following result (the de Moivre-Laplace central limit
theorem). For all z ∈ R,

P

(
Sn − np√
np(1− p) < z

)
→ Φ(z) as n→∞, (2.10)

where Φ, given by

Φ(z) =
1√
2π

∫ z

∞
e−u

2/2 du,

is the distribution function of the normal distribution with mean 0 and standard deviation 1.
This result may also be obtained by careful manipulation of (2.8). However, it will again
be considered and proved, for very much more general sequences of independent identically
distributed random variables, in a later lecture.
The central limit theorem implies in particular that deviations of Sn from its mean np are
typically of order n1/2. It is a stronger result than the weak law of large numbers which is a
trivial consequence of it.
A considerably deeper result (of which the proof is yet again postponed) is the following.
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Strong law of large numbers.

P
(
Sn
n
→ p as n→∞

)
= 1. (2.11)

(we usually say Sn/n→ p almost surely (a.s.) as n→∞).
It is important to understand the relationship between the conclusions of the weak and strong
laws of large numbers. For each ε > 0 and for each positive integer n, define the events

Aεn =
{Sn′

n′
− p
 ≤ ε for all n′ ≥ n

}
,

Bε
n =

{Snn − p
 ≤ ε} .

The strong law of large numbers (2.11) is equivalent to the assertion that

P

(⋂
ε>0

⋃
n≥1

Aεn

)
= 1, (2.12)

and since
⋃
n≥1A

ε
n is decreasing as ε decreases, (2.12) is further equivalent to the assertion that

P

(⋃
n≥1

Aεn

)
= 1, for all ε > 0. (2.13)

Since, for each fixed ε, Aεn is increasing as n increases, it finally follows from (2.13) that the
strong law of large numbers is equivalent to the assertion that

lim
n→∞

P (Aεn) = 1 for all ε > 0. (2.14)

Since, for each ε and each n, we have that Aεn ⊆ Bε
n, it follows from the strong law of large

numbers that
lim
n→∞

P (Bε
n) = 1 for all ε > 0. (2.15)

which is just the weak law of large numbers. The conclusion of the strong law cannot, however,
be deduced from that of the weak law.
Interpretation of strong law of large numbers. The strong law of large numbers says that, in
repeated independent trials, in each of which an event occurs with probability p, the long term
frequency of occurrence of that event tends to p—at least with probability 1 (we say almost
surely). Thus, for example, in repeated independent tosses of a coin which lands heads with
probability p, the long-term proportion of heads will always tend to p, no matter how perverse
the results of any initial sequence—however long—of the tosses. This is one interpretation of
what it means to say that the coin lands heads with probability p.
In practice, if we took a coin we thought to be fair (p = 1/2) and then obtained 80 heads in the
first 100 tosses of that coin, we would regard this as strong evidence that, after all, p > 1/2. We
would therefore expect that, in further tosses of the coin, the number of heads would continue
to considerably exceed the number of tails. But this is a statistical issue, arising because we do
not know for certain the true value of p. In probability theory we reason as if probability models
were known precisely. In the real world, such reasoning is an essential component of making
inference in the presence of uncertainty.
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2.3.3 Time to the occurrence of a given pattern

We think of our Bernoulli trials as occurring sequentially at times n = 1, 2, . . . , and ask about
(the distribution of) how long we have to wait until we observe some given pattern. Note that a
general recipe for answering this question for any pattern is quite sophisticated (but an attractive
example of the martingale theory of later lectures). We give here some arguments for particular
examples.

Time to the first occurrence of ‘1’. The simplest such question is that of the distribution
of the random variable T1 defined to be the first time n such that ξn = 1, i.e.

T1 = min{n ≥ 1: ξn = 1}.

Clearly we have that, for all n ≥ 1,

P(T1 = n) = P(ξ1 = 0, . . . , ξn−1 = 0, ξn = 1)
= P(ξ1 = 0) . . .P(ξn−1 = 0)P(ξn = 1) (independence)

= (1− p)n−1p,

i.e. T1 has a geometric distribution with parameter p (we write T ∼ Geo(p)).

Time to the first occurrence of ‘11’. Define the random variable

T11 = min{n ≥ 2: ξn−1 = 1, ξn = 1}.

For n ≥ 1, define pn = P(T11 = n). Then p1 = 0 and p2 = p2. For n ≥ 3, in order for the event
T11 = n to have any possibility of occurring, we must either have ξ1 = 0 or else ξ1 = 1, ξ2 = 0;
hence, by the partition rule,

pn = P(T11 = n)
= P(ξ1 = 0)P(T11 = n | ξ1 = 0) + P(ξ1 = 1, ξ2 = 0)P(T11 = n | ξ1 = 1, ξ2 = 0)
= P(ξ1 = 0)P(T11 = n− 1) + P(ξ1 = 1, ξ2 = 0)P(T11 = n− 2)
= (1− p)pn−1 + p(1− p)pn−2,

where the third line above follows since, in the case of the occurrence of either of the events
ξ1 = 0 or ξ2 = 0, we effectively restart the process of waiting for the given pattern. Hence we
obtain a simple linear recurrence relation, enabling the determination of successive values of pn.
As usual, pn has an explicit solution in terms of the roots of a quadratic equation, but this is
not very enlightening.

Time to the occurrence of the first k ‘1’s. We now consider something slightly different,
the time Tk to the occurrence of the first k ‘1’s, without requiring that they should all occur
together. For n ≥ k, in order for Tk to be equal to n, we require that ξn = 1 and that, of the
random variables ξ1, . . . , ξn−1, exactly k − 1 of them should be equal to 1. We thus have

P(Tk = n) = Bin(n− 1, k − 1)pk(1− p)n−k. (2.16)

The random variable Tk is said to have a negative binomial distribution with parameters k and
p.
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2.4 Exercises

2–1. A letter is placed in a desk with some probability p < 1, and is then equally likely to be
placed in any one of 8 drawers in the desk. A total of 7 of the drawers are opened, and
the letter is not found in any of them. Given this event, what is the probability that the
letter is in the 8th drawer? [Answer: p/(8− 7p).]

2–2. An urn contains 5 red and 3 green balls. Three balls are chosen at random, in succession,
and without replacement.

(a) Show that the probability that all three balls drawn are red is 5/28.
(b) Use the chain and partition rules to show that the probability that the third ball

drawn is red is 5/8. Can you give also a quick derivation of this result?
(c) Show that the (conditional) probability that the third ball drawn is red, given that

the first ball drawn is red, is 4/7; show also that the (conditional) probability that
the first ball drawn is red, given that the third ball drawn is red, is 4/7. Can you
draw any further interesting conclusions?

2–3. An urn contains 12 red, 8 green and 10 blue balls. Two balls are chosen at random without
replacement (the order of their choice being irrelevant). Given the event that they have
different colours, find the conditional probabilities that

(a) neither ball is blue [answer: 12/37];
(b) at least one ball is blue [answer: 25/37].

2–4. Of three cards, one is red on both sides, one is black on both sides, and one is red on one
side and black on the other. A card is chosen at random (each choice being equally likely)
and then placed flat so that either side is equally likely to show. Given that a red side
shows, what is the (conditional) probability that the other side shows red? [Answer: 2/3.]

2–5. [Chung.] Telegraphic signals dot and dash are sent in the proportion 3 : 4. Due to
conditions causing very erratic transmission a dot becomes a dash with probability 1/4,
whereas a dash becomes a dot with probability 1/3. If a dot is received, what is the
(conditional) probability it is sent as a dot? [Answer: 27/43.]

2–6. A tells the truth with probability 3/4, while B tells the truth with probability 4/5. From
an urn containing 8 black and 1 white balls, 1 ball is selected at random. Given that both
A and B declare the ball to be white, find the (conditional) probability that it is white.
[Answer: 3/5.]

2–7. A fair die is rolled twice, the successive rolls being independent. Define the following
events:

A = {the first roll shows an odd number}
B = {the second roll shows an even number}
C = {the sum of the two numbers obtained is odd}

Show that the events A, B, and C are pairwise independent but are not independent.

2–8. Show that disjoint events A and B are independent if and only if either P(A) = 0 or
P(B) = 0.

2–9. A system contains 5 components and is such that, for 1 ≤ i ≤ 5, component i works with
probability pi. The components work, or fail to work, independently of each other. Find
the probability that the system works under each of the following sets of conditions:
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(a) the system works if and only if all five components work [answer:
∏5
i=1 pi];

(b) the system works if and only if at least one component works [answer: 1−∏5
i=1(1−

pi)];
(c) the system works if and only if components 1, 2, 3 and 4 all work or components 3,

4 and 5 all work [answer: p3p4(1− (1− p1p2)(1− p5))].

Now consider any rule whereby whether or not the system works is a function of whether
or not each of the components works, provided only that it satisfies the following natural
condition: for each component i, if, for any given combination of states of the remaining
components, the entire system works when component i is not working, then it also works
when component i is working. Show that the probability that the entire system works is
an increasing function of each pi.

2–10. A standard pack of 52 playing cards contains 4 aces. A bridge player is dealt 13 cards which
may be considered as being randomly chosen from the 52. Show that the probability that
(s)he is dealt no aces is 0.01279. Find also the probability that, in 3 successive independent
deals, no aces are ever obtained. [Answer: 2.093× 10−6.]

2–11. Five teams play in a football tournament. Every team plays every other team. Each match
is equally likely to be won by either team (a draw cannot happen) independently of the
outcome of the other matches. Find the probability of the (one) event that, at the end of
the tournament, each team has won precisely two matches. [Answer: 3/128].

2–12. Six points are chosen uniformly at random, and independently of each other, from the
interval [0, a].

(a) For 0 < b < a, find the probability that 2 of the points are less than (or equal to) b,
while 4 are greater than b. [Answer:

(
6
2

) b2(a−b)4
a6 .]

(b) For 0 < b < c < a, find the probability that 2 of the points are less than (or equal
to) b, 1 is between b and c, while 3 are greater than c. [Answer: 6!

2!1!3!
b2(c−b)(a−c)3

a6 .]

2–13. Consider 4 cities A, B, C, D. The following pairs are connected by roads: A with B, B
with D, D with C, C with A, and B with C. Each road is independently blocked by snow
with probability p.

(a) Show that the probability that it is possible to travel by road from A to D is given
by (1− p)2(1 + 2p+ p2 − 2p3).

(b) Show that, conditional on the event that it is possible to travel from A to D, the
probability that the road BC is not blocked is given by (1−p)(1+p)2

1+2p+p2−2p3
.

2–14. A certain hereditary characteristic has associated with it (as usual) the three genotypes
(gene pairs) AA, Aa, aa. Assume that in a large population these exist in the proportions
u : 2v : w where u > 0, v > 0, w > 0 and u + 2v + w = 1. Under random mating,
a randomly chosen individual (for which P(AA) = u, P(Aa) = 2v, P(aa) = w) mates
with another such individual whose genotype is independent of the first. The genotype
of the offspring is obtained by combining one ‘letter’ (gene) chosen at random from the
genotype of one parent—either choice being equally likely—with one ‘letter’ (gene) chosen
independently at random from the genotype of the other parent. (Thus, for example, if
both parents have genotype Aa, the genotype of the offspring will be AA, Aa, aa with
respective probabilities 1/4, /2, 1/4.) Suppose now that the initial population dies out
and is replaced by its first generation offspring. Show that the genotypes in this first
generation population are in the proportions p2 : 2pq : q2, where p = u + v, q = v + w.
Deduce carefully that these proportions are maintained in all subsequent generations.
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2–15. Consider a sequence of independent Bernoulli trials in which on each occasion the proba-
bility of obtaining a ‘1’ is 1/2. Let T01 be the time to the first occurrence of the pattern
‘01’, i.e.

T01 = min{n ≥ 2: ξn−1 = 0, ξn = 1}.
Show that, for all ≥ 1, P(T01 > n) = (n+1)/2n, and deduce that P(T01 = n) = (n−1)/2n.

Show that it is easier to obtain the pattern ‘01’, than to obtain the pattern ‘11’, in the
sense that if T11 is the random variable defined in Section 2.3.3, then, for all n ≥ 2,

P(T01 ≤ n) ≥ P(T11 ≤ n).

[This is tricky.] Understand intuitively why this is so.

2–16. [Problem for research.] Consider the simple symmetric random walk (S′n, n ≥ 0) defined
in Section 2.3.1 (recall that here, for all i, P(ξ′i = 1) = P(ξ′i = −1) = 1/2). Show that, for
all integer n ≥ 1,

P(S′1 6= 0, . . . , S′2n 6= 0) = P(S′2n = 0).


